Implement core

This commit is contained in:
Riley Apeldoorn 2022-06-07 14:53:23 +02:00
commit 868ce0a90c
6 changed files with 1762 additions and 0 deletions

1
.gitignore vendored Normal file
View file

@ -0,0 +1 @@
/target

1076
Cargo.lock generated Normal file

File diff suppressed because it is too large Load diff

13
Cargo.toml Normal file
View file

@ -0,0 +1,13 @@
[package]
name = "hermit"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
tokio = { version = '*', features = [ "full" ] }
futures = '*'
reqwest = '*'
serde = { version = '*', features = [ "derive" ] }
serde_json = '*'

74
flake.lock Normal file
View file

@ -0,0 +1,74 @@
{
"nodes": {
"flake-utils": {
"locked": {
"lastModified": 1652776076,
"narHash": "sha256-gzTw/v1vj4dOVbpBSJX4J0DwUR6LIyXo7/SuuTJp1kM=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "04c1b180862888302ddfb2e3ad9eaa63afc60cf8",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"type": "github"
}
},
"naersk": {
"inputs": {
"nixpkgs": "nixpkgs"
},
"locked": {
"lastModified": 1653413650,
"narHash": "sha256-wojDHjb+eU80MPH+3HQaK0liUy8EgR95rvmCl24i58Y=",
"owner": "nix-community",
"repo": "naersk",
"rev": "69daaceebe12c070cd5ae69ba38f277bbf033695",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "naersk",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1653738054,
"narHash": "sha256-IaR8iLN4Ms3f5EjU1CJkXSc49ZzyS5qv03DtVAti6/s=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "17b62c338f2a0862a58bb6951556beecd98ccda9",
"type": "github"
},
"original": {
"id": "nixpkgs",
"type": "indirect"
}
},
"nixpkgs_2": {
"locked": {
"lastModified": 1653738054,
"narHash": "sha256-IaR8iLN4Ms3f5EjU1CJkXSc49ZzyS5qv03DtVAti6/s=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "17b62c338f2a0862a58bb6951556beecd98ccda9",
"type": "github"
},
"original": {
"id": "nixpkgs",
"type": "indirect"
}
},
"root": {
"inputs": {
"flake-utils": "flake-utils",
"naersk": "naersk",
"nixpkgs": "nixpkgs_2"
}
}
},
"root": "root",
"version": 7
}

33
flake.nix Normal file
View file

@ -0,0 +1,33 @@
{
inputs = {
flake-utils.url = "github:numtide/flake-utils";
naersk.url = "github:nix-community/naersk";
};
outputs = { self, nixpkgs, flake-utils, naersk }:
flake-utils.lib.eachDefaultSystem (
system: let
pkgs = nixpkgs.legacyPackages."${system}";
naersk-lib = naersk.lib."${system}";
in
rec {
# `nix build`
packages."hermit" = naersk-lib.buildPackage {
pname = "hermit";
root = ./.;
};
defaultPackage = packages."hermit";
# `nix run`
apps."hermit"= flake-utils.lib.mkApp {
drv = packages."hermit";
};
defaultApp = apps."hermit";
# `nix develop`
devShell = pkgs.mkShell {
nativeBuildInputs = with pkgs; [ rustc cargo openssl pkgconfig ];
};
}
);
}

565
src/main.rs Normal file
View file

@ -0,0 +1,565 @@
use futures::prelude::*;
#[tokio::main]
async fn main() {
todo!()
}
mod task {
//! Async tasks, communicating with each other across threads through generic
//! streams and sinks.
use std::pin::Pin;
use std::sync::Arc;
use futures::prelude::*;
use crate::{flow::Flow, Activity, ctrl::Message, rule::Rule};
/// Perform a [`Task`].
pub fn run (task: impl Task) {
tokio::spawn(task.run());
}
/// A computation running indefinitely on a separate thread.
pub trait Task {
/// The future representing this computation.
type Future: Future<Output = ()> + Send + 'static;
/// Execute the task.
fn run (self) -> Self::Future;
}
/// API request event processing.
pub struct Api <F, A, C, P> {
/// Input stream of API request events from the frontend endpoints.
pub fe_rx: F,
/// Input stream of API request events from the ActivityPub
/// endpoints.
pub ap_rx: A,
/// Output stream to the [`Ctrl`] task.
pub ctrl_tx: C,
/// Output stream to the [Activity processor pipeline][Process].
pub pipe_tx: P,
}
/// Processes CLI commands and sends them to either the [`Auto`] task (which
/// takes care of scheduling automated maintenance tasks) or the [`Ctrl`] task,
/// which propagates control messages through the system, like live config
/// updates or shutdown messages for example.
pub struct Ipc <A, C> {
/// Output stream to the [`Auto`] task.
pub auto_tx: A,
/// Output stream to the [`Ctrl`] task.
pub ctrl_tx: C,
}
/// Delivers control messages to other running tasks.
pub struct Ctrl <A, I, S> {
/// Message stream from the [`Api`] task.
pub api_rx: A,
/// Message stream from the [`Ipc`] task.
pub ipc_rx: I,
/// Fan-out to all running tasks that are subscribed to [control messages][Ctrl].
pub tx: S,
}
/// Performs automated maintenance tasks.
pub struct Auto <E, C> {
/// Receiver for manual job triggers received from the [`Ipc`] task.
pub ipc_rx: E,
/// Receiver for [control messages][Ctrl].
pub ctrl_rx: C,
}
pub struct Process <D, C, F> {
pub data_rx: D,
pub ctrl_rx: C,
pub fe_tx: F,
}
impl<D, C, F> Task for Process<D, C, F>
where
D: Stream<Item = Flow<serde_json::Value>> + Unpin + Send + 'static,
C: Stream<Item = Message> + Unpin + Send + 'static,
Arc<F>: Sink<Activity> + Send + Sync + 'static,
F: Send + Sync + 'static,
{
type Future = Pin<Box<dyn Future<Output = ()> + Send + 'static>>;
fn run (self) -> Self::Future {
let Self { mut data_rx, mut ctrl_rx, fe_tx } = self;
Box::pin(async move {
let mut config = crate::conf::Config::new("localhost");
let ctx = crate::Context {};
let sink = Arc::new(fe_tx);
loop {
tokio::select! {
// Await control commands from `Ctrl`.
Some (message) = ctrl_rx.next() => match message {
// Live config reloading.
Message::Reconfigure (c) => c(&mut config),
// Graceful termination command from `Ctrl`.
Message::Terminate => break,
},
// Listen for incoming activities.
Some (data) = data_rx.next() => {
// Dereferencing and other unfucking.
let d = ctx.dereferencer();
let data = match data.apply(|j| d.dereference(j)).await {
Ok (data) => data,
_ => continue,
};
// Run both incoming and outgoing activities through the filtering system.
let action = |act| config.rules.iter().try_fold(act, |a, r| r.apply(a));
let data = match data.map(action).to_option() {
// Activity survived the filtering process, bind it to `data`.
Some (data) => data,
// Activity got filtered out, move on.
None => continue,
};
// Perform each activity in the context of the instance.
let c = ctx.clone();
let copy = data.clone();
let data = match data.apply(|a| a.perform(c)).await {
// Everything went ok, we can continue, bind `copy` to `data`.
Ok (_) => copy,
// Something went wrong while performing the activity,
// report error and move on.
_ => continue,
};
// If incoming: push a notification to the frontend.
let incoming = {
let s = sink.clone();
let c = config.notify.clone();
move |a: Activity| a.notify(c, s)
};
// If outgoing: deliver the activity to its targets.
let outgoing = {
let s = ctx.signer();
move |a: Activity| a.deliver(s)
};
match data.pick(incoming, outgoing).await {
Ok (_) => println!("Yay"),
_ => println!("Boo"),
};
},
}
}
})
}
}
}
pub mod flow {
//! Functional control flow based on the source and destination
//! of a message flowing through the system.
use std::future::Future;
/// A wrapper type that annotates a message with the flow it is
/// supposed to take, without allowing that flow to be inspected
/// or modified.
#[derive(Clone)]
pub struct Flow <T> {
flow: Direction,
data: T,
}
#[derive(Clone, Copy)]
enum Direction {
Incoming,
Outgoing,
}
impl<T> Flow<T> {
#[allow(non_snake_case)]
/// Make the data take the "incoming" flow.
pub fn Incoming (data: T) -> Flow<T> {
Flow { data, flow: Direction::Incoming }
}
#[allow(non_snake_case)]
/// Make the data take the "outbound" flow.
pub fn Outgoing (data: T) -> Flow<T> {
Flow { data, flow: Direction::Outgoing }
}
/// Apply a function `f` to the value inside, without disturbing
/// the flow direction.
pub async fn apply <F, A, U, E> (self, f: F) -> Result<Flow<U>, E>
where
A: Future<Output = Result<U, E>>,
F: FnOnce (T) -> A,
{
let Flow { data, flow } = self;
Ok (Flow {
data: f(data).await?,
flow,
})
}
/// If the message is taking the incoming flow, apply `f`, if it is taking the
/// outgoing flow, apply `g`.
pub async fn pick <F, G, A, B, U, E> (self, f: F, g: G) -> Result<Flow<U>, E>
where
A: Future<Output = Result<U, E>>,
B: Future<Output = Result<U, E>>,
F: FnOnce (T) -> A,
G: FnOnce (T) -> B,
{
match self.flow {
Direction::Incoming => self.apply(f).await,
Direction::Outgoing => self.apply(g).await,
}
}
/// Map over the contained value.
pub fn map <F, U> (self, f: F) -> Flow<U>
where
F: FnOnce (T) -> U,
{
Flow {
data: f(self.data),
flow: self.flow,
}
}
}
impl<T> Flow<Option<T>> {
/// Swap the containers.
pub fn to_option (self) -> Option<Flow<T>> {
let Flow { flow, data } = self;
data.map(|data| Flow {
flow,
data,
})
}
}
impl<T, E> Flow<Result<T, E>> {
/// Swap the containers.
pub fn to_result (self) -> Result<Flow<T>, E> {
let Flow { flow, data } = self;
data.map(|data| Flow {
flow,
data,
})
}
}
}
/// Control messages.
pub mod ctrl {
use std::sync::Arc;
use crate::conf::Config;
#[derive(Clone)]
pub enum Message {
/// Modify the existing configuration of each task.
Reconfigure (Arc<Box<dyn Fn (&mut Config) + Send + Sync>>),
Terminate,
}
}
/// Configuration.
pub mod conf {
use crate::rule::Rule;
pub struct Config {
/// The domain of the instance.
pub host: String,
/// The port to host the instance on. Defaults to `6969`.
pub port: u16,
/// Filtering rules applied to each activity.
pub rules: Vec<Box<dyn Rule + Send + Sync>>,
/// Notification predicate.
pub notify: Notify,
}
impl Config {
/// Create a new default config.
pub fn new (hostname: impl ToString) -> Config {
let (notify, rules) = def();
Config {
host: hostname.to_string(),
port: 6969,
notify,
rules,
}
}
}
#[derive(Clone, Copy)]
pub struct Notify {
pub post_liked: bool,
pub post_shared: bool,
pub follow_requested: bool,
pub new_follower: bool,
}
impl Default for Notify {
fn default () -> Self {
Notify {
post_liked: true,
post_shared: true,
follow_requested: true,
new_follower: true,
}
}
}
/// Shortcut for creating a default instance
fn def <T> () -> T where T: Default { T::default() }
}
#[derive(Clone)]
pub struct Context {}
impl Context {
pub fn dereferencer (&self) -> Dereferencer {
Dereferencer { web: reqwest::Client::new() }
}
pub fn signer (&self) -> &(dyn sign::Sign + Send + Sync) {
todo!()
}
}
pub struct Dereferencer {
web: reqwest::Client
}
impl Dereferencer {
pub async fn dereference (&self, a: serde_json::Value) -> Result<Activity> {
todo!()
}
}
#[derive(Debug)]
pub enum Error {}
pub type Result <T, E = Error> = std::result::Result<T, E>;
#[derive(Clone)]
pub enum Activity {
Create (act::Create),
Follow (act::Follow),
}
impl Activity {
pub async fn perform (self, ctx: Context) -> Result<()> {
todo!()
}
pub async fn notify <S> (self, cfg: conf::Notify, sink: S) -> Result<()>
where
S: Sink<Activity>,
{
todo!()
}
pub async fn deliver <S> (self, signer: &S) -> Result<()>
where
S: sign::Sign + ?Sized,
{
todo!()
}
}
pub mod act {
#[derive(Clone)]
pub enum Create {
Note {},
}
#[derive(Clone)]
pub enum Follow {
Actor {},
}
}
pub mod sign {
//! Request signing.
use reqwest::Request;
use crate::Result;
pub trait Sign {
fn sign (&self, req: &mut Request) -> Result<()>;
}
}
pub mod rule {
//! User-defined activity transformation rules.
//!
//! Every [`Rule`] is a function `fn (Activity) -> Option<Activity>`.
use super::Activity;
/// Transforms an [`Activity`].
///
/// ```
/// use hermit::{ Activity, rule::{ Filter, Rule, keep } };
///
/// // Fails to compile if the given parameter is not a `Rule`
/// fn is_rule <R: Rule> (x: R) -> R { x }
///
/// // Closures of `Activity -> Activity` or
/// // `Activity -> Option<Activity>` can be used.
/// let closure = is_rule(|a: Activity| Some(a));
///
/// // `hermit::rule::Filter` implements `Rule`. This one will
/// // filter every activity.
/// let filter = is_rule(Filter (|_| true))
///
/// // `hermit::rule::keep` is a function pointer, and they
/// // always implement the `Fn*` traits.
/// let function = is_rule(keep);
///
/// // Rules can be combined using the `then` operator, in which
/// // case they will be applied in sequence.
/// let combined = is_rule(closure.then(filter).then(keep));
///
/// // Check if it works! Due to `filter`, any input this combined
/// // rule is applied to will be dropped.
/// let result = combined.apply(todo!());
/// assert!(result.is_none())
/// ```
pub trait Rule {
/// Apply the rule to the [`Activity`].
///
/// If this function returns `None`, the activity is dropped and will
/// not be processed further. This allows rules to function both as
/// transformations and as filters.
fn apply (&self, act: Activity) -> Option<Activity>;
/// Sequence `next` after `self` in a lazy way.
fn then <R> (self, next: R) -> Then<Self, R>
where
Self: Sized,
R: Rule,
{
Then (self, next)
}
/// Apply `self` only if `pred` holds.
fn only_if <P> (self, pred: P) -> Cond<P, Self>
where
Self: Sized,
P: Fn (&Activity) -> bool,
{
Cond { rule: self, pred }
}
}
impl<F, O> Rule for F
where
O: Into<Option<Activity>>,
F: Fn (Activity) -> O,
{
fn apply (&self, act: Activity) -> Option<Activity> {
self(act).into()
}
}
// Primitives
/// Always keep passed activities.
pub fn keep (a: Activity) -> Option<Activity> { Some (a) }
/// Always drop passed activities.
pub fn drop (_: Activity) -> Option<Activity> { None }
/// A simple filtering rule that drops the activity if it matches the predicate `P`.
pub struct Filter <P> (pub P)
where
P: Fn (&Activity) -> bool;
impl<P> Rule for Filter<P>
where
P: Fn (&Activity) -> bool
{
fn apply (&self, act: Activity) -> Option<Activity> {
let Self (f) = self;
if f(&act) {
None
} else {
Some (act)
}
}
}
// Combinators
/// Sequence two rules.
///
/// `B` will only be applied if `A` returns [`Some`], otherwise it
/// short-circuits.
pub struct Then <A, B> (A, B);
impl<A, B> Rule for Then<A, B>
where
A: Rule,
B: Rule,
{
fn apply (&self, act: Activity) -> Option<Activity> {
let Self (a, b) = self;
a.apply(act).and_then(|act| {
b.apply(act)
})
}
}
/// Apply a rule conditionally.
///
/// If the predicate `P` returns `true`, apply `R`. Otherwise, return the
/// activity unmodified.
pub struct Cond <P, R> {
pred: P,
rule: R,
}
impl<P, R> Rule for Cond<P, R>
where
P: Fn (&Activity) -> bool,
R: Rule,
{
fn apply (&self, act: Activity) -> Option<Activity> {
let Self { pred, rule } = self;
if pred(&act) {
rule.apply(act)
} else {
Some (act)
}
}
}
}